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Abstract

I incorporate the productivity risks into an investment-based q-factor asset pricing

model. The productivity risks factors largely summarize the cross-sectional portfolio

return, in which the time-varying volatility plays an important role. A parsimonious

q-factor model driven by productivity risks explains about 90% variation of return of

25 Size/BM portfolios and around 75% variation of return of 160 portfolios, which

is comparable to the Fama-French multifactor models, the Carhart (1997) four-factor

model, and the Hou, Mo, Xue & Zhang (2020) q5 model. As such, productivity growth

risks can be one of the potential forces driving investment-based factor models.
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1 Introduction

A growing literature focuses on the economic background behind the multifactor asset

pricing models under the investment approach (see Hou et al. 2015, 2019, Hou, Xue & Zhang

2020, Hou, Mo, Xue & Zhang 2020, among others). However, the economic driving forces

behind such investment-based asset pricing models have received little attention. The major

contribution of this paper is to show that productivity risks, in particular the productivity

uncertainty risks, are the potential driving forces behind the investment-based q-factor

model. To this end, I show that like the Hou et al. (2015)’s q-Factor model and Hou,

Mo, Xue & Zhang (2020)’s q5 model, the major productivity risk factors can be derived from

the first-order condition of investment return, which naturally integrates productivity risk

factors to the investment-based q-factor model. Besides, this paper shows that the exposure

to productivity risks, in particular the volatility risks, leads to considerable risk premiums.

As such, aggregate productivity risks conduce to understand the empirical success of q-Factor

series models.

In particular, productivity growth uncertainty plays an important role in driving the

investment-based q-factor model. It has long been recognised that the macroeconomic

volatility risks impact on asset prices. However, the previous literature of the production

and investment-based asset pricing in long-run risks address quantitative models (see Caldara

et al. 2012, Kaltenbrunner & Lochstoer 2010, Croce 2014, among others), only a little work

put on empirical asset pricing tests (Chen et al. 2020). As such, I empirically specify

the time-varying productivity uncertainty process and find that it is the crucial factor in

determining the equity return variations. As such, this paper brings the literature of long-run

risks and investment-based factor pricing model together.

My empirical examination of macroeconomic uncertainty starts with following the work

of Boguth & Kuehn (2013). I assume the first and second-order conditional moments of

its productivity shock follow Markov regime-switching processes, whose persistences capture
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the long-run risks and time-varying macro volatility. I then follow Hamilton (1990) and Liu

& Miao (2015)’s Expectation Maximisation algorithm to identify the hidden Markov chains

for the first and second-order conditional moments of productivity growth shock. Using the

samples of productivity shock from 1963Q1 to 2020Q2, I find that the empirical estimation

strongly supports the presence of shifts in mean and volatility regimes, with mean regimes

being more persistent.

In my main asset pricing tests, I propose two benchmark models that can incorporate

productivity risks into an equilibrium framework. The first benchmark model only combines

all productivity risk factor with an additional investment-capital ratio factor, which can

entirely be derived from the first-order condition of investment return. The second benchmark

model includes all factors from the first benchmark model, with the additional market risk

premiums factor and size factor from the q-factor model. I investigate the fitness and

standard errors of my benchmark asset pricing models using annual returns of 160 portfolios

(i.e., 25 portfolios sorted on size/value, 25 portfolios sorted on size/profitability, 25 portfolios

sorted on size/investment, 25 portfolios sorted on value/profitability, 25 portfolios sorted

on value/investment, 25 portfolios sorted on profitability/investment, 10 portfolios sorted

on industries). I consider various equity portfolios and an investment-based theoretical

framework to avoid the critique of Lewellen et al. (2010)2.

The tests results are striking. The first benchmark model merely consisting of the

productivity risks and investment capital ratio captures around 90% stock variation of the

equal-weighted 25 SIZE/BM portfolios, which outperforms most of factor pricing models.

It also explains the three-fourths equity variation of equal-weighted 160 portfolios, which is

comparable to the majority factor pricing models. The second benchmark model even has

a better performance than the first one. Despite the test performances of both benchmark

2Lewellen et al. (2010) suggest that testing multifactor asset pricing models with 25 SIZE/BM portfolios

and evaluating model performances with cross-sectional R2 is highly misleading. When adding industry

portfolios, the cross-sectional R2 sharply reduce.
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models drop in the sample of value-weighted portfolios, the second benchmark model is still

the leader in a group of asset pricing models. By subtracting the risk factors of productivity

growth and its conditional mean, I find that productivity uncertainty is a negatively priced

source that plays a major role in explaining the cross-sectional equity return variation. To

end, I show that the empirical success of the productivity shock is based on it captures the

feature of bad economic states, as the high productivity volatility occurs in bad times.

My work is highly close to the work of Chen et al. (2020) but has several major

differences. First, their work links to the first-order condition of investment return by the

expected growth factor in Hou, Mo, Xue & Zhang (2020)’s q5 model. In their work, the

productivity risks belong to the capital gain rather than the dividend yield. By contrast, my

work mathematically illustrates that, in an equilibrium framework, the TFP risks belong to

the dividend yield component (i.e., marginal production function to capital) rather than the

item of capital gain, given the first-order condition of the firm maximisation problem. The

stochastic process driving the law of motion of capital accumulation (i.e., the investment rate

growth) is viewed as the investment-specific technology shock in the standard macroeconomic

literature (see Fisher 2006, Justiniano et al. 2010, Winberry 2018, among others) rather than

the TFP process. Thus, my work incorporates the productivity risks into the investment-based

model with a more rigorously macroeconomic approach.

Furthermore, Chen et al. (2020) estimate the productivity risks from Compustat financial

data, but this paper chooses the TFP samples from the San Francisco Fed. Besides, Chen

et al. (2020) selected the macro uncertainty risk factors by statistical criteria. As such, they

can hardly use the macro uncertainty factor to explain the profitability factor, because the

correlation between macro uncertainty and ROE factor is too low in their work 3. In contrast,

3Chen et al. (2020) report that their macro uncertainty factor is highly correlated to the expected growth

factor with a correlation coefficient 0.22, but it almost has no relation to the profitability factor, as the

correlation coefficient is -0.02. My work reports that the correlation coefficient between macro uncertainty

and profitability is 0.21.
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I follow Boguth & Kuehn (2013) to specify the productivity growth follows a four-state

Markov chain and construct the related risk factors, whose correlation to profitability factor

is relatively high, which is not the case in Chen et al. (2020)’s work.

Moreover, Chen et al. (2020) examine asset pricing implications behind both macro

uncertainty and micro uncertainty in which the micro uncertainty plays a marginal role. As

such, my work only focuses on the macro uncertainty and show that it largely captures the

variation of cross-sectional stock return. An additional difference is I consider both first and

second-order perceived moments of long-run productivity as risk factors while Chen et al.

(2020) only consider the second-order moment. Despite such differences, both studies suggest

that macro uncertainty leads to sizable risk premiums and provides insight to understand

the q-factor model. However, my work is more close to the economic equilibrium framework

than Chen et al. (2020)’s work.

In sum, my work provides the insights behind the q-Factor model and q5 model in

two points. First, the productivity risks summarise the features of economic recession and

sufficiently explains the stock return variation in the cross-section. As such, productivity

risks link the macroeconomic fluctuations to the equity return. Second, both productivity

risks and q-factor model are derived from the first-order condition of investment return such

that productivity risks are naturally involved in the q-factor model. Therefore, productivity

risks could be possible sources to drive the investment-based q-factor asset pricing model.

Literature Review This study contributes to three strands of the literature. First, this

study contributes to the asset pricing implications of aggregate productivity volatility risks.

The stochastic volatility has been widely studied in the macro-asset pricing literature, in

particular, the consumption-based models (see Bansal & Yaron 2004, Bansal et al. 2005,

Boguth & Kuehn 2013, among others). In the production side, Caldara et al. (2012),

Kaltenbrunner & Lochstoer (2010), and Croce (2014) build quantitative models with stochastic

volatility in productivity to investigate the asset pricing puzzles. Empirically, Chen et al.
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(2020) investigates the asset prices effects of uncertainty shock by explaining the expected

growth factor. In contrast, my work addresses the effects of productivity risks by seeking

the driving force behind the first-order condition of production.

Further, this research belongs to the empirical literature of investment-based asset

pricing model. Cochrane (1991) proves that the investment return equals the equity return.

As such, the aggregate investment responds to equity risk premiums, which links asset prices

to business cycle fluctuations. One step further, Cochrane (1996) shows that the investment

capital ratio is a risk factor that can substantially explain the cross-sectional stock return.

Belo (2010) links a flexible production technology to the cross-sectional portfolio return. My

work contributes to this branch of literature by specifying a detailed productivity process

from the economic data.

Moreover, this paper offers a potential economic background behind the multifactor

asset pricing models. On the one hand, Fama & French (1993, 1996, 2015, 2018) consider

the Inter-temporal CAPM model (Merton 1973) as the theoretical background. On the other

hand, Hou et al. (2015) and Hou, Mo, Xue & Zhang (2020) explain multifactor models by

the investment-based asset pricing framework. However, Hou, Mo, Xue & Zhang (2020)

points out that further studies should shed light on the economic driving forces of the risk

factors(e.g., profitability, expected growth, investment). My work adds in this strand of

literature by introducing productivity risks. As such, my work could be considered as a

supplement of Hou et al. (2015)’s q-factor model, or an alternative of Hou, Mo, Xue & Zhang

(2020) for I provide another approach to extend a static model to its dynamic version.

Road Map The rest of this paper is organized as follows. Section 2 presents a parsimonious

investment-based asset pricing model. Section 3 introduces the identification methodologies,

which includes Hamilton (1990)’s Expectation Maximisation algorithm and Fama & Macbeth

(1973) two-pass regression. Section 4 illustrates all empirical results. Section 5 draws

conclusions.
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2 An Investment-Based Asset Pricing Framework

2.1 Model Setup

Environment Assume the representative firm lives in an infinite horizon environment with

discrete-time as Cochrane (1996). The firm adopts the physical capital and technology to

produce a single investment good and maximise its profits.

Technology The production sector follows an investment-based model with a parsimonious

assumption that constant labour Nt = 1:

Yt = AtK
α
t (1)

where Yt and Kt denote the aggregate output and capital stock. The aggregate productivity

At follows a four-state Markov Chains process.

Markov Regime Switching in Productivity I assume both the first and second-order

moment of the aggregate productivity growth follow the Markov Chain. More specifically,

the logarithm productivity growth log At+1

At
follows:

log
At+1

At
= ∆at = νt + σtεt, εt ∼ N(0, 1). (2)

in which νt and σt present the conditional mean and standard deviation. Following Boguth

& Kuehn (2013), I assume two states for the conditional mean νt ∈ {νh, νl}, and other two

independent states for the conditional volatility σt ∈ {σh, σl} where h and l denote the high

and low level, respectively. Specifically, the economy has probability pµll (pµhh) to stay a low

(high) growth rate if it enters in a low (high) growth rate at the beginning. Second, the

economy has probability pσll (pσhh) to face a low (high) macro uncertainty state if it starts

with a low (high) macro uncertainty state. As such, the transition matrices P µ and P σ is

6



denoted by:

P µ =

 pµll 1− pµll
1− pµhh pµhh

 , P σ =

 pσll 1− pσll
1− pσhh pσhh

 . (3)

Given the independent assumption above, the joint transition matrix is the product of

transition matrices of conditional expectation and standard deviation, which consists of

16 elements. Note that the Hidden Markov Chain processes are unobservable, the agent

will infer the future state from observable data Yt and Kt. Like Boguth & Kuehn (2013), I

consider θt+1|t as current period’s prior belief vector for the future period’s states:

θt+1|t = P ′
θt|t−1 � ηt

1′
(
θt|t−1 � ηt

) (4)

in which P ′ = P µ ⊗ P σ and ηt represent the joint transition matrix and the vector of

conditional Guassian likelihood functions, respectively. In this case, � and ⊗ denote the

element-by-element multiplication and Kronecker tensor product.

Capital Adjustment and Accumulation The law of motion of capital accumulation

process bases on the standard investment-based asset pricing model with one additional

ingredient—the convex capital adjustment costs. I present the capital accumulation process

as:

Kt+1 =

{
(1− δ)Kt +

φ

2

(
It
Kt

)2

Kt

}
(5)

where φ is a parameter to control the convex capital adjustment costs.

2.2 Asset Pricing Implications

Let me state the ex-dividend equity price as Pt and the dividend as Dt in current

period. Taking the stochastic discount factor Mt,t+1 as given, on the production block, the

firm chooses the optimal investment stream to maximise the market equity, which satisfies
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the first principle of investment Et
[
Mt,t+1R

I
t+1

]
= 1. As such, the firm problem is denoted

by:

Vt = max
It
E0

{
∞∑
t=0

M0,t

[
Yt −

φ

2

(
It
Kt

)2

− It

]}
(6)

I then derive the first-order condition of the return on investment as:

RI
t+1 =

[
α Yt+1

Kt+1
+ φ

(
It+1

Kt+1

)2]
+ (1− δ)

[
1 + φ It+1

Kt+1

]
1 + φ

(
It
Kt

) (7)

given the concluding remarks of Cochrane (1991):

RI
t+1 = Re

t+1 (8)

where It
Kt

, Yt
Kt

represent the q-factor factor and the profitability factor, respectively. Hou, Mo,

Xue & Zhang (2020) decompose the investment return into two components—the dividend

yield

[
α Yt+1

Kt+1
+ φ

(
It+1

Kt+1

)2]
/
[
1 + φ

(
It
Kt

)]
and the capital gain (1− δ)

[
1 + φ It+1

Kt+1

]
/
[
1 + φ

(
It
Kt

)]
.

As mentioned above, I assume the production function as Yt = Atf(Kt) and the total

productivity factor process as log At+1

At
= ∆at = νt + σtεt, εt ∼ N(0, 1). The component of

dividend yield α Yt+1

Kt+1
is identical to the marginal production to capital:

α
Yt+1

Kt+1

= α
At+1K

α
t+1

Kt+1

= αAt+1K
α−1
t+1 (9)

in which the capital accumulation process follows:

Kt+1 =

{
(1− δ)Kt +

φ

2

(
It
Kt

)2

Kt

}

Therefore, the profitability factor Xt+1 can be viewed as the function of the q-factor and the

productivity risks.

Xt+1 ≡ α
Yt+1

Kt+1

= G

(
At+1,

It
Kt

)
(10)
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Equation (10) suggests that the productivity shock affects the return by the channel of

marginal production to capital and dividend yields (i.e., the profitability factor) rather

than the capital gain (i.e., the expected investment growth factor). This is the major

difference between my work and Chen et al. (2020)’s work—I incorporate the TFP risks

into the first-order conditional of productivity Xt+1, but Chen et al. (2020) introduce TFP

risks into the expected growth factor It+1/Kt+1

It/Kt
. As such, their work is more close to the

investment-specific shock that contributes to capital accumulation rather than the first-order

condition of productivity. Since Chen et al. (2020) and Hou, Mo, Xue & Zhang (2020) build

the dynamic factor based on the investment-rate growth, my work can also be viewed as an

alternative approach to build a dynamic factor model.

3 Empirical Methodology

The identification work consists of two components. First, I construct the productivity

risk factors. To this end, I estimate the unconditional parameters and filtered probabilities

of productivity risks at the beginning. I then consider the changes in beliefs on the mean and

volatility states as risk factors. Second, I adopt Fama & Macbeth (1973) two-pass regression

to investigate the pricing effects of such risk factors and test the performances of factor

models that combine the TFP risk factors and Hou et al. (2015)’s q-factor model.

3.1 Data

1. Total Factor Productivity. I focus on quarterly TFP data from San Francisco Fed since

1963Q1 to 2020Q2 (Fernald 2012) 4. I display the basic statistics in the Panel A of

4As we will consider the expected first-order difference of innovations, two period’s values will be missed.

As such, I consider two more quarters in the sample selection to keep it be consistent. Second, the portfolios

are constructed from June 1963. Thus, the corresponding productivity risk factors had better be also formed

by June 1963. To end, I skip the final two quarters to annualise the quarterly data. Another reason is, 1963
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Table 1. Using macro data form Fed rather than Compustat is also the difference

between my work and Chen et al. (2020)’s work 5.

2. Equity Portfolios. I consider annual return of 160 portfolios (i.e., 25 SIZE/BM portfolios,

25 SIZE/OP portfolios, 25 SIZE/INV portfolios, 25 BM/OP portfolios, 25 BM/INV

portfolios, 25 OP/INV portfolios, 10 portfolios sorted on industry). Data are from 1967

to 2019, as I target the five-factor model. I adopt these collections of portfolios for three

reasons. First, it is the cornerstone for numerous risk-factors widely accepted in the

empirical asset pricing literature (Fama & French 1993, 2018, Hou et al. 2019). Second,

it is an inclusive of acknowledged patterns in the cross-sectional stock returns. Besides,

to avoid the critique of Lewellen et al. (2010), testing multifactor asset pricing models

should base on various cross-sectional equity portfolios except for the 25 Size-Value

portfolios 6. I display the basic statistics in the Panel B of Table 1.

3. The q-Factor. I take data of q-factor model (e.g., the expected growth factor and the

q-factor) during 1967 to 2019 from Professor Lu Zhang’s website in which makes a

factor model based on an equilibrium framework 7.

3.2 Identification Methodology

Estimating Productivity Dynamics Following Hamilton (1990)’s Expectation Maximisation

algorithm, I estimate the conditional first-order moment νt ∈ {νh, νl} and second-order

is the beginning of Kennedy’s tax cut. It would be better to capture the whole event of economic and tax

reform.
5Details come from San Francisco Fed’s website: https://www.frbsf.org/economic-research/indicators-data

/total-factor-productivity-tfp/.
6Details are from Professor Ken French’s website: http://mba.tuck.dartmouth.edu/pages/faculty/ken.french

/data library.html.
7Details are in the following website: http://global-q.org/index.html.
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moment σt ∈ {σh, σl} of the productivity risks, as well as the transition probability matrices

P µ and P σ. Since the Hidden Markov Chain process is unobservable, the agent’s prior beliefs

of the first and second-order moments of productivity growth captures the economic states.

Namely. the prior beliefs equal prior probabilities. As such, the first principle of investment

return and profitability are a function of the agent’s beliefs. To this, end I define the prior

beliefs that the conditional expectation and standard deviation are low in the next period as

bν,t and bσ,t, and I then compute such prior beliefs under the current information set Ft as:

bν,t = P (νt+1 = νl|Ft)

bσ,t = P (σt+1 = σl|Ft)
(11)

Constructing Productivity Risk Factors The economic states are characterised by the

product of the prior probabilities and the value conditional on the relevant state. Therefore,

I specify the perceived mean and volatility of productivity growth as the weighted average

based on prior probabilities:

ν̂t = bν,tνl + (1− bν,t)νh

σ̂t = bσ,tσl + (1− bσ,t)σh
(12)

Following Boguth & Kuehn (2013), I consider the first-order differences of both perceived

moments as risk-factors:

∆ν̂t = ν̂t − ν̂t−1

∆σ̂t = σ̂t − σ̂t−1
(13)

To test the annual return data, all productivity risks factors above are annualised from the

quarterly frequency.

Testing Portfolios by Risk Factors In this paper, I consider two models as the benchmark

models to test portfolios. The first model is a four-factor model consisting of three TFP

factors (i.e., the productivity growth, the conditional mean and volatility of productivity
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growth) and the q-factor, which can entirely yield from the first-order condition of investment

return. The second model is a six-factor model that combines three productivity risk factors

and the rest three factors (i.e., the q-factor, the market risk premiums factor, and the size

factor) in Hou et al. (2015)’s q-factor model. I highlight the benchmark models as:

Ri
t+1 −R

f
t+1 =α

i
t + βTFP∆TFP t + βν∆ν̂t + βσ∆σ̂t + βqqt + µit

αit + βTFP∆TFP t + βν∆ν̂t + βσ∆σ̂t + βqqt + βMktMktt + βSMBSMBt + µit

(14)

I also test a large group of multifactor asset pricing models. The control group includes

(i) Fama & French (1993, 2015, 2018) three-factor, five-factor, and six-factor model; (ii) the

Hou et al. (2015) four-factor model and the Hou, Mo, Xue & Zhang (2020) five-factor model

(i.e., the q5 model); (iii) the Carhart (1997) four-factor model. I summarise these sets of

asset pricing models as:

Ri
t+1 −R

f
t+1 =

αit + βMktMktt + βSMBSMBt + βHMLHMLt + µit

αit + βMktMktt + βSMBSMBt + βHMLHMLt + βCMACMAt + βRMWRMWt + µit

αit + βMktMktt + βSMBSMBt + βHMLHMLt + βCMACMAt + βRMWRMWt + βMOMMOMt + µit

αit + βqqt + βMktMktt + βSMBSMBt + βROEROEt + µit

αit + βqqt + βEGEGt + βMktMktt + βSMBSMBt + βROEROEt + µit

αit + βMktMktt + βSMBSMBt + βHMLHMLt + βMOMMOMt + µit

(15)

where the Ri
t+1 and Rf

t+1 denote the i th portfolio return and the risk-free rate, respectively.

Mktt, SMBt, HMLt, CMAt, RMWt, MOMt represent the factors of market excess return,

size, value, investment, profitability, and momentum from Fama & French (2018)’s six factor
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model. Unlike Chen et al. (2020), I do not incorporate the productivity risk factors into

Fama & French (1993, 2015, 2018)’s multifactor pricing models in the control group, as their

work bases on the inter-temporal CAPM model.

Two-Pass Regression Consider a k-factor asset pricing model, the vectors of risk loading,

risk factors, and estimated risk premiums are given by β=
(
βi1t , β

i2
t , . . . , β

ik
t

)
, F=

(
F 1
t , F

2
t , . . . , F

k
t

)
and λ=

(
λ1, λ2, . . . , λk

)
, respectively. The standard Fama & Macbeth (1973) regression

Et[R
i
t+1 −R

f
t+1]=βλ consists of two steps:

Ri
t+1 −R

f
t+1 = constik1 + βikt F

k
t + εik

R̄i − R̄f = constk2 + βikλk + ϕk
(16)

where the first step is time-series regression to yield the risk loadings β̂ =
(
β̂i1t , β̂

i2
t , . . . , β̂

ik
t

)
,

and the second step is cross-sectional regression to deliver the risk premiums λ̂=
(
λ̂1, λ̂2, . . . , λ̂k

)
.

constik1 and constk2 are the constants in the first and second-pass regressions, respectively.

εik and ϕk report the residuals in both regression procedures.

Conditional Risk Premiums and Model Fitness Cochrane (2005) suggests that the

price of excess return is identical to zero, which delivers:

Et[Mt,t+1

(
Ri
t+1 −R

f
t+1

)
] = 0 (17)

Therefore, the conditional risk premiums associate with the covariance between ex-post risk

premiums and the stochastic discount factor, which are given by:

Et[Mt,t+1

(
Ri
t+1 −R

f
t+1

)
] = Et[Mt,t+1]Et[

(
Ri
t+1 −R

f
t+1

)
] + Covt(Mt,t+1, R

i
t+1 −R

f
t+1) = 0

⇒ Et[R
i
t+1 −R

f
t+1] = −

Covt(R
i
t+1 −R

f
t+1,Mt,t+1)

Et[Mt,t+1]

= −
Covt(R

i
t+1 −R

f
t+1,Mt,t+1)

V art[Mt,t+1]
× V art[Mt,t+1]

Et[Mt,t+1]
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(18)

I follow Cochrane (1996) to identify the stochastic discount factor in an investment-based

factor pricing model. Suppose a vector of stochastic discount factor of a k-factor asset pricing

model to be Mt,t+1 =
(
M1

t,t+1,M
2
t,t+1, . . . ,M

k
t,t+1

)
, in which Mk

t,t+1 is the stochastic discount

factor of the k-th risk factor. As such, I derive the risk loadings as βikt = −Covt(Ri
t+1−R

f
t+1,M

k
t,t+1)

V art[Mk
t,t+1]

and risk premiums as λk =
V art[Mk

t,t+1]

Et[Mk
t,t+1]

. I then compute the fitted cross-sectional risk

premiums by:

Et[R
i
t+1 −R

f
t+1] = β̂ikt λ̂

k (19)

from the results of Fama & Macbeth (1973) regression. My work measures the model fitness

through comparing the fitted risk premiums β̂ikt λ̂
k and the average sample portfolio excess

return in a 45 degree line.

4 Empirical Results

I report several empirical results in this section. My report starts with the estimation

of unconditional parameters, filtered probabilities, and the expected conditional mean and

volatility of the aggregate productivity risks. Second, I present the constructed productivity

risks factors in time-series level and report its relationship to other risk factors in Hou, Mo,

Xue & Zhang (2020)’s q-factor model. Besides, I test the pricing performances of productivity

risks factors and incorporate them into an investment-based asset pricing framework.

In my further asset pricing analysis, I estimate various factor pricing models adopting

annual returns for 25 size/value, 25 size/profitability, 25 size/investment, 25 value/profitability,

25 value/investment, 25 profitability/investment, and 10 industry portfolios. The results of

equally-weighted portfolios are reported from Table 6 to Table 10 with the corresponding

expected risks premiums from Figure 3 and Figure 4. Analogously, the results of value-weighted
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portfolios are presented from Table 11 to Table 15 with the corresponding fitted risks

premiums from Figure 5 and Table 6.

4.1 Productivity Process

I present the estimated parameters of the Markov regime-switching model in Table 2.

The quarterly expected growth rate is -0.9% in the low expected growth regime but would

be 0.34% in the high expected growth regime, which the transition probabilities pµll = 0.7249

and pµhh = 1 − 0.0325 = 0.9675, respectively. As such, the implied average duration of

the recession state is 4 quarters while the expansion state is around 30 quarters, which is

longer than the estimation of Hamilton (1990) and Liu & Miao (2015). I plot the filtered

probabilities with the red line in Figure 1. The red line states that the prior probability

spikes during the downturn, which implies a positive comovement between low expected

economic growth and the business cycle recession.

Analogously, the quarterly expected volatility is 0.58% in the low regime but turns to

be 1.11% in the high regime, whereas the transition probabilities pσll = 0.9517 and pσhh =

1 − 0.0902 = 0.9098, respectively. As such, the implied average duration of the recession

state is 11 quarters while the expansion state is around 20 quarters. In contrast to the

sample from 1952 Boguth & Kuehn (2013), Liu & Miao (2015), my result suggests that the

first-order moment of productivity risks is more persistent than the second-order moment.

As such, my estimations suggest that the U.S economy expected more persistent expansions

but less persistent recessions.

A possible explanation is, since the 1960’s, Kennedy’s supply-side tax cut policy made

the 106 months expansions of the American economy. As such, the agent expects a longer

duration of economic expansions. I plot the filtered probabilities of low expected volatility

states with the blue line in Figure 1, which indicates that the prior probability spikes

during the expansions. Therefore, the prior probability of low expected volatility positively
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Figure 1: Filtered Probabilities: Conditional Mean and Volatility

Figure 1. This figure illustrates the estimated prior probabilities for the low expected growth state (red

line) and low expected volatility state (blue line). I use Hamilton (1990)’s algorithm to estimate the results.

Data cover 1963Q1 to 2020Q2.

associated with the macroeconomic boom.

4.2 Production-Based Risk Factors

As suggested by Boguth & Kuehn (2013), the AR(1) − GARCH(1, 1) process plays a

marginal role in capturing the variations of asset prices. Liu & Miao (2015) suggests that

the AR(1)−GARCH(1, 1) productivity process only predicts 10% of the long horizon stock

return in time-series. As such, I construct the risk factors based on the regime-switching

model rather than theAR(1)−GARCH(1, 1) model and examine the cross-sectional implications

of stock return. As mentioned above, I construct the risk factors by two steps. I first compute
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the perceived first and second-order moments by computing average states based on the prior

probabilities. The results are reported in the first Panel of Figure 2. Second, I find the

changes of belief innovations by the first-order differences of these perceived moments. I

consider such changes in the belief innovations as productivity risk factors that are reported

in the second panel of Figure 2.

Figure 2: Risk Factors

Figure 2 demonstrates the first and second-order perceived moments and their changes. I consider such

changes in moments as risk factors as Boguth & Kuehn (2013). Data cover 1963Q1 to 2020Q2.

Further, I display the relation of productivity risk factors to other factors in the q-factor

model. Table 3 suggests that my three productivity growth risk factors ∆at, ∆νt, and ∆σt

have the coefficients of correlation −0.2195, −0.1834, and 0.2127 to the profitability factor.
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In Chen et al. (2020)’s work, they report a correlation coefficient of macro uncertainty to

expected growth factor as 0.22, but report an almost irrelevant relationship of aggregate

uncertainty to profitability factor. Since they select the risk factor only by the statistical

criteria, one cannot expect that they will introduce the TFP uncertainty risks into the

ROE factor. As such, it would be not easy to incorporate their work into an equilibrium

investment-based asset pricing model.

Second, I examine the performance of productivity risk factors using the standard

Fama & Macbeth (1973) two-pass regression. First, for each portfolio in the cross-section,

I adopt the time-series regression to estimate unconditional risk loadings of the portfolio

excess returns on the productivity growth ∆at, as well as the changes in perceived first and

second-order moments of productivity growth ∆νt and ∆σt, respectively. Second, I use the

cross-sectional regression of the expected excess return on risk-loadings mentioned above to

obtain the prices of risks. This paper presents the result of the second procedure regression

in Table 4. Finally, I consider the profitability factor as the control group in this case, as I

treat the combination of productivity risks and q-factor as the proxy of first-order conditional

of production to capital Xt+1 while Hou et al. (2015) treat the ROE factor as the proxy.

4.3 From Risk Factors to Benchmark Models

In this section, I first report the results of productivity risk pricing, and then discuss how

to construct the first benchmark investment-based q-Factor model starting with productivity

risks. I also display another prospective to build my first benchmark model beginning with

the q-Factor.

Using the R-Squared as a criterion, the estimation results from Table 4 suggests that

the productivity risks largely summarises the cross-sectional variation of equity return. In

particular, the productivity uncertainty risks play a crucial role—it captures 67.1% of the

stock return variation of 25 SIZE/BM portfolios and 40.2% of the equity return variation of
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160 portfolios. Overall, the three productivity factors summarise around 85% of the stock

return variation in 25 SIZE/BM portfolios and about 45% equity return variation of the 160

portfolios. Therefore, my estimation results suggest that three productivity growth factors

are indeed priced risk factors. My work supports Boguth & Kuehn (2013)’s argument that

macro uncertainty is a negatively priced source, but the role of the conditional mean of

productivity growth is ambiguous. The reason is, the Newey & West (1987) T-statistics

of the conditional mean of productivity growth are not always significant. As such, the

estimator of the first-order moment of productivity risks may be indifferent from zero, and

one cannot identify the role of the conditional mean of TFP risks in determining asset prices.

Different from Boguth & Kuehn (2013), the mere productivity risks cannot capture the

full information in the stochastic discount factor—-one needs the risk factors from investment

and capital in an equilibrium framework. As such, I propose the first benchmark model that

consists of three productivity risk factors and q-factor as mentioned above from the first

principle of investment.

Model IV in Table 4 displays the performance of the first benchmark model. I show

that my first benchmark model explains around 90% stock return variation in 25 SIZE/BM

portfolios and about three-fourths equity return variation in 160 portfolios. As the first

benchmark model are directly derived from the firm maximisation problem, my work suggests

that a four-factor model entirely derived from the first-order condition of investment can

largely summarise the equity return variation in equal-weighted portfolios.

As equation (10) suggest, both the profitability factor and the first benchmark model

are proxies of the first-order condition of dividend yield. Thus, in Table 4, I also compare

their explanation powers. Given that the T-statistic of single ROE factor is not significant

different from zero in 95% confidence interval in the 25 SIZE/BM portfolios, I find that the

first benchmark model outperforms the single profitability factor. Even though the estimator

of the profitability factor is significant (-4.2819) in the case of 160 portfolio, the T-statistic of

intercept is more significant (17.0617). As such, the first baseline model still outperforms the
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single ROE factor—the adjusted R2 and RMSE can also confirm this argument. Overall,

the first benchmark model could be an alternative candidate model that links the first

order-condition to portfolio return in cross-section.

Table 4 offers the method to incorporate q-Factor into productivity risks, while Table

5 provides an alternative perspective to construct the first benchmark model beginning with

the q-Factor. Estimated results suggest that the single q-Factor can explain around 40% to

45% stock return variation in a wide set of cross-sectional portfolios. Adding the productivity

uncertainty factor makes the model explains around 60% to 75% equity return variations that

significantly improve the model performance. Second, adding all productivity risk factors

would also improve the model performances and yield the first benchmark model.

The construction of the second benchmark model seems simple. To this end, I briefly

incorporate all productivity risks into other factors (i.e., the market risk premiums factor, the

size factor, the investment factor) of the q-factor model (Hou et al. 2015). As such, my work

differs from Chen et al. (2020)’s work, as we build the benchmark models by economically

explaining different risk factors—they explain the expected investment growth factor while

I interpret the marginal production function.

4.4 Model Fitness

Table 6 reports the performances of various factor pricing models based on a partial

equilibrium framework under 25 SIZE/BM equal-weighted portfolios. The Model I and

Model VIII are my first and second benchmark model mentioned above. In this case, one

can see the progress of how does the first benchmark model develop to the second benchmark

model. Model IX and X are q-Factor models and q5 model in Hou, Mo, Xue & Zhang (2020).

I consider two criteria as the measurements of model performances—the adjusted R-Square

and the root-mean-square error (RMSE).

Table 6 show that both benchmark models achieve a good fit in determining the
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standard 25 SIZE/BM equal-weighted portfolios, with about 90% in cross-sectional R-Squares

and around 1 in the root-mean-square deviation. As such, the benchmark models significantly

outperform the q-Factor model and q5 model. Second, adding the expected growth factor into

the productivity risks is ambiguous. The additional expected growth factor can sometimes

improve the model performance but not a usual case, as the model V reports a higher value

on the standard error (1.1 vs 1.08) and a lower value on F-tests (31.4 vs 41.2), R-Square

(0.863 vs 0.870) in contrast to model IV and the degree of freedom. Second, the value of

Newey & West (1987) T-statistics in the expected growth factor is too small. As such,

the expected growth factor plays a marginal role in this case, and I do not incorporate the

expected growth factor in my benchmark model at this stage.

Table 7 demonstrates that the performances of both benchmark model are comparable

to the q-Factor model and q5 model under the 160 portfolios. Surprisingly, the first benchmark

model consisting of merely productivity risk factor and investment-rate factor has similar

performance to many complicated multifactor models under broad sets of equity portfolios, as

it interprets about three-fourths stock return variations in the equal-weighted 160 portfolios.

As such, this paper argues that a parsimonious factor model purely derived from the first-order

condition of investment return has comparable empirical fitness to multifactor models, providing

a deeper economic background to understand the q-Factor series models.

Table 8 illustrates the testing results of Fama & French (1993, 2015, 2018) and Carhart

(1997) factor pricing models under a broad range of equal-weighted stock portfolios. All

multifactor models capture around 70% (0.688 to 0.700) equity return variations using the

25 SIZE/BM portfolios. However, under the 160 portfolios, the Fama & French (1993)

three-factor model and Carhart (1997) four-factor model can merely explain around 60%

equity return variations, which underperform other alternatives. Overall, using a wide range

of equal-weighted equity portfolios, both benchmark models driven by productivity risks

perform at least as good as Fama & French (2015, 2018) multifactor models and Hou et al.

(2015), Hou, Mo, Xue & Zhang (2020) q-Factor series models in terms of the fitness. As
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such, the aggregate productivity can be one of the candidates of driving forces behind the

investment-based q-Factor model.

Figure 3: Conditional Risk Premiums: 25 Equal-Weighted SIZE/BM Portfolios

The empirical success of the productivity risks driving q-factor model is also demonstrated

in Figure 3 and Figure 4, in which I report the comparison between the fitted expected

return and sample average return of the cross-sectional equity portfolios. Figure 3 indicates

that the fitted expected excess returns generated by both benchmark models (i.e., the TFP

four-factor and six-factor model) are almost identical to sample observations, as the scatters

nearly align in the 45-degree line. By contrast, the rest models (i.e., the Fama & French

(1993, 2015, 2018) multifactor models, the Carhart (1997) four-factor model, and the Hou

et al. (2015), Hou, Mo, Xue & Zhang (2020) q-Factor series models) in the control groups

show significant deviations to the reference 45-degree line.

Figure 4 states the deviations of conditional risk premiums produced by all testing

asset pricing models to their samples under the equal-weighted 160 portfolios. Except for

the slightly larger deviations of Fama & French (1993) three-factor model and the Carhart
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Figure 4: Conditional Risk Premiums: 160 Equal-Weighted Portfolios

(1997) four-factor model, the rest models predict similar deviations to their corresponding

observations. The arguments from the goodness of fit and deviation are identical and

consistent that the productivity risks driving q-Factor models show comparable performances

to their multifactor peers.

Results in both Table 4 and Table 5 indicate that, by contrast to the productivity

growth and its conditional mean, the time-varying productivity uncertainty plays the crucial

role in explaining the stock return variations of cross-sectional equity portfolios. As such, I

subtract the other two risk factors in both benchmark models and evaluate the performances

based on the macroeconomic uncertainty driving q-Factor models. I report the test results in

Table 9 and Table 10. I denote Model I and Model VIII as the first and second degenerate

benchmark models and address their performances, as they correspond to the first and second

benchmark model above.

Given the R-Square as the criterion, results of Table 9 and Table 10 suggest that the

first and second degenerate benchmark model can capture 74.8% and 77.5% equity return
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variations in the equal-weighted 25 SIZE/BM portfolios, which are also comparable to the

q-Factor model and q5 model, and slightly outperform the Fama-French and Carhart factor

pricing models. Besides, the first and second degenerate benchmark model respectively

predict 64.2% and 73.7% stock return variations in the equal-weighted 160 portfolios. As

such, the first degenerate benchmark model still outperforms the Fama & French (1993)

three-factor model (59.9%) and Carhart (1997) four-factor model (60.2%) even it underporforms

the Fama & French (2015, 2018) five-factor (73.9%) and six-factor models (74.6%), as well as

the q-Factor model (73.3%) and q5 model (74.1%) . By contrast, the performance of second

degenerate benchmark model is comparable to those multifactor models.

The tests of degenerate benchmark models state that productivity uncertainty serves

as the most crucial driving force in all productivity risk factors. Therefore, one can adopt

uncertainty driving factor models entirely derived from the first-order condition of investment

return to capture most of the equity return variations in a wide range of equal-weighted

cross-section stock portfolios.

4.5 Value Weighted Portfolios

In this section, I test the same models above using the 25 value-weighted SIZE/BM

portfolios and 160 value-weighted portfolios. Empirical results in Table 11 state that, the

first and second benchmark models explain 71.9% and 75.6% of the stock return variations

of 25 Size-Value portfolios. Despite the explanation powers of benchmark models drop, the

fitness is at least as good as the q-Factor model (72.9%) and q5 model (72.5%).

Further, under the 160 value-weighted portfolios, results from Table 12 illustrate that

the first benchmark model (Model I) merely explains half (48.2%) of the stock return

variation of 160 portfolios (Model VIII), which faintly underperforms the q-Factor model

(52.1%) and q5 model (52.6%). By contrast, the second benchmark model interprets 60%

equity return variation of 160 portfolios, which slightly outperforms the q-Factor model and
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q5 model.

What is more, I report the test results of control group asset pricing models in Table 13.

The Fama & French (1993, 2015, 2018) three-factor, five-factor, and six-factor model captures

68%, 65.4%, and 71.9% stock return variation of 25 value-weighted SIZE/BM portfolios,

respectively. Second, the Carhart (1997) four-factor model explains 73.1% equity return

variation of the identical samples. Therefore, my first benchmark model is comparable to

these multifactor asset pricing models and the second benchmark model faintly outperforms

the above models.

In the case of 160 value-weighted portfolios, most factor models merely explain about

50% of the cross-sectional stock return variations. Three models outperform their peers by

capturing around 60% equity return variations, which are the FF five-factor model (58.4%),

FF six-factor model (59.9%), and my second benchmark model (60%).

Figure 5: Conditional Risk Premiums: 25 Value-Weighted Portfolios

One can also be understand the empirical performances from Figure 5 and Figure 6.

The deviations of fitted expected excess return to sample average returns are larger than
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the case of equal-weighted portfolios. All models have similar performances in determining

around 65% to 75% return variations on the 25 SIZE/Value portfolios, and about 50% to 60%

variation of stock return on the 160 portfolios. As such, it would be not easy to distinguish

from the figures. Despite the explanation powers decrease for all asset pricing models when

testing value-weighted portfolios, the second benchmark model is still the leader in such a

large group of factor models.

Figure 6: Conditional Risk Premiums: 160 Value-Weighted Portfolios

The discussion of value-weighted portfolios ends with the case of degenerate first and

second benchmark model only driven by the macroeconomic uncertainty shock. The degenerate

first benchmark model determines 61.9% and 37.5% of the return variations in the cases of 25

value-weighted SIZE/BM portfolios and 160 value-weighted portfolios, which underperforms

most of the factor pricing models. By contrast, the degenerate first benchmark model

captures 67.6% and 51% equity return variations of 160 cross-sectional portfolios, which

is comparable to the q-Factor model and the q5 model. Overall, the uncertainty driving

q-factor model is comparable to other q-Factor series model considering a wide range of
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factor pricing models and equity portfolios.

An additional finding is, under the 25 value-weighted SIZE/Value portfolios, the Newey

& West (1987) T-statistics in the second benchmark model is not significant in the 95%

confidence interval. However, this insignificance outlined above overturns in the case of 160

value-weighted portfolios. The degenerate second benchmark model has similar performances

in all portfolios tests. As such, the first benchmark model directly derived from the first-order

condition of investment is preferred in explaining the variation of return on 25 SIZE/Value

portfolios. By contrast, the second benchmark model is preferred when I consider a large

set of portfolios. The degenerate benchmark model can only be used to understand the

mechanism but not to be applicable in the portfolio asset pricing.

4.6 Volatility States and Risk Premiums

A successful macro-asset pricing model should capture the relationship between economic

recession and time-varying risk premiums. The literature of long-run risks suggests that the

conditional mean of macroeconomic growth is procyclical but its conditional volatility is

countercyclical such that it captures the bad economic states and produce higher expected

risk premiums at such states.

For this reason, I display the relationship of NBER recession and filtered probabilities

in Figure 7. The red, blue, and brown line represent the prior beliefs on the low expected

growth states, the low expected volatility states, and the NBER recession indicator, respectively.

The low expected growth states positively move with the recession indicator with a correlation

coefficient 0.7324. In contrast, the low expected volatility states inversely move with the

recession indicator with a correlation coefficient -0.4848. Therefore, the regime-switching

model captures the macroeconomic fluctuations and successfully links to stock return variations.
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Figure 7: NBER Recession and Filtered Probability

5 Conclusion

In this paper, I illustrate that the productivity risks, especially productivity volatility

risks, can be a driving force behind the investment-based q-factor asset pricing model. To

this end, I consider that the productivity risks as an unobservable four-state hidden Markov

chains process and identify such a Markov process. I then construct productivity risk factors

the regime-switching model and propose two benchmark investment-based q-factor models

driven by productivity risks.

The tests results indicate that both benchmark models sufficiently summarise the equity

return variation of broadly set cross-sectional portfolios. My results strongly support the

long-run risks model, as I find that the macroeconomic uncertainty is an adversely priced

source that mostly leads to risk premiums. The empirical success relies on the macroeconomic

volatility can capture the states in the economic downturn. As such, productivity risks,

particularly the productivity volatility, build a linkage between the business cycle fluctuations
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and financial markets.

The estimation results also provide insights to understand the q-Factor model and

q5 model. First, productivity risks connect the capital market and macroeconomics, as

mentioned above. Second, like the q-Factor model and q5 model, productivity risks can

be derived from the first-order condition of investment return, particularly the marginal

productivity function. Thus, aggregate productivity is one of the candidate economic forces

behind the q-Factor model and q5 model.
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Table 1: TFP Growth and 160 Portfolios: Summary Statistics

Table 1 summarises the mean and standard deviation of the TFP growth and annual return in 160 portfolios

in this study. I consider the 25 size/value, 25 size/profitability, 25 size/investment, 25 value/profitability, 25

value/investment, 25 profitability/investment, and 10 industry portfolios. Both of the equal-weighted and

value-weighted cases are involved. The Productivity growth samples cover 1963Q1 to 2020Q2, and portfolio

samples cover 1967 to 2019.

Panel A: Productivity Growth

Average Std.dev.

0.8711 3.2532

Panel B: Cross-Sectional Portfolios

Characteristics Portfolios Equal-Weighted Value-Weighted

Average Std.dev. Average Std.dev.

25 SIZE/BM SIZE1/BM5 23.5861 33.1606 19.6173 27.8412

SIZE5/BM1 11.6839 19.7774 11.7231 18.8951

25 SIZE/OP SIZE1/OP1 18.3780 38.5377 12.7476 32.3342

SIZE5/OP5 13.0864 18.7728 12.5644 18.1049

25 SIZE/INV SIZE1/INV1 24.4257 42.2256 17.8274 32.9988

SIZE5/INV5 10.0844 22.8453 11.5719 22.4172

25 BM/OP BM1/OP1 9.7455 40.6295 7.1760 32.8853

BM5/OP5 22.9081 52.4478 19.6992 34.6995

25 BM/INV BM1/INV1 17.1434 40.9808 12.3118 22.5537

BM5/INV5 16.9318 33.8415 12.2487 25.6547

25 OP/INV OP1/INV1 22.6249 40.4320 12.5644 18.1049

OP5/INV5 13.7537 28.9963 12.9890 18.9816

10 Industry Industry 1 14.9166 26.4438 13.5916 17.4063

Industry 10 16.2909 26.8795 12.1743 20.1529
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Table 2: Markov Model of Productivity Growth

This table illustrates estimated parameters of the Markov model for log productivity growth ∆at: log At+1

At
=

∆at = νt + σtεt, εt ∼ N(0, 1), in which the conditional first-order moment νt ∈ {νh, νl} and second-order

moment σt ∈ {σh, σl}. The conditional expectation and standard deviation processes change with transition

matrices Pµ and Pσ, which are denoted by

P µ =

 pµll 1− pµll
1− pµhh pµhh

 , P σ =

 pσll 1− pσll
1− pσhh pσhh

 .
My algorithm follows Hamilton (1990). I adopt quarterly productivity growth for the years 1963Q1 to

2020Q2. Standard errors are reported in parentheses.

Parameters νl νh σl σh pµll 1− pµhh pσll 1− pσhh
Values -.0090 .0034 .0058 .0111 .7249 .0325 .9517 .09015

std.err (.0035) (.0007) (.0010) (.0020) (.1499) (.0200) (.0305) (.0999)
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Table 3: Factor Correlations

This table reports the correlation of productivity risks factors to other factors in the q-factor model. I display

three productivity factors ∆at, ∆νt, and ∆σt, as well as the q-factor, expected growth factor, profitability

factor, market risk factor, and size factor in the augmented q-factor model Hou, Mo, Xue & Zhang (2020).

Panel A: Factor Correlation

Variables ∆at ∆νt ∆σt Q EG Mkt SMB ROE

∆at 1.0000 0.5269 -0.0789 -0.0500 -0.0231 0.5136 0.1643 -0.2195

∆νt 1.0000 -0.3747 0.1210 0.0764 0.3628 0.1980 -0.1834

∆σt 1.0000 -0.1109 -0.0275 -0.2056 -0.2061 0.2127

Q 1.0000 0.3127 -0.2754 0.1080 -0.1377

EG 1.0000 -0.4377 -0.2623 0.3623

Mkt 1.0000 0.1830 -0.2452

SMB 1.0000 -0.2034

ROE 1.0000
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Table 4: Productivity Risk Pricing

This table presents the estimated market prices of risks from the second step cross-sectional regression. I

consider three productivity risk factors ∆at, ∆νt, and ∆σt, as well as the q-factor and the profitability factor.

In this table, I construct the first benchmark model (Model IV) beginning with the productivity risk factor.

Panel A and B reports the results of 25 Size-Value Portfolios and 160 portfolios, respectively. I report the

adjusted R2 and Newey & West (1987) T-statistics with four lags for each estimation. Data cover 1967 to

2019 with annual frequency.

Models Intercept ∆at ∆νt ∆σt Q ROE Adj-R2 RMSE F-Test P-Value DOF

(t-stat) (t-stat) (t-stat) (t-stat)

Panel A: 25 Value-Size Portfolios

I 4.8169 3.7338 0.162 2.74 5.64 0.0263 23

(1.6746) (1.8868)

II 6.5017 0.0016 0.077 2.87 3 0.0968 23

(2.6440) (1.5899)

III 1.7230 0.0019 0.671 1.71 50 3.34e-07 23

(1.1678) (-5.9327)

IV 1.0506 4.0838 -0.0014 -0.0014 0.827 1.24 39.4 8.38e-09 21

(1.2247) (5.6560) (-2.6936) (-5.8865)

V 1.9768 4.8137 -0.0004 -0.0009 1.4270 0.870 1.08 41.2 2.17e-09 20

(2.3676) (8.7774) (-0.7972) (-4.3798) (2.4267)

VI 6.8443 -5.1303 0.171 2.72 5.95 0.0228 23

(3.8943) (-1.9492)

Panel B: 160 Portfolios

I 4.8318 3.9944 0.175 3.12 34.7 1.12e-21 158

(4.8318) (3.9944)

II 6.8645 0.0016 0.133 3.20 25.3 1.31e-06 158

(8.1394) (5.0869)

III 4.5456 -0.0014 0.402 2.66 20.7 1.32e-19 158

(4.6337) (-7.1109)

IV 3.7673 1.8138 0.0004 -0.0013 0.433 2.59 41.5 9.2e-20 158

(3.6774) (1.6066) (0.7683) (-5.0408)

V 4.5238 4.7521 0.0015 -0.0003 5.3547 0.736 1.76 112 1.15e-44 155

(6.4193) (8.7671) (4.5397) (-2.0672) (9.4756)

IV 9.0023 -3.0434 0.110 3.24 20.7 0.0228 158

(17.0617) (-4.2819)
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Table 5: The q-Factor Risk Pricing

This table presents the estimated market prices of risks from the second step cross-sectional regression. I

consider three productivity risk factors ∆at, ∆νt, and ∆σt, as well as the q-factor. In this table, I construct

the first benchmark model (Model III) starting with the q-factor. Panel A and B reports the results of 25

Size-Value Portfolios and 160 portfolios, respectively. I report the adjusted R2 and Newey & West (1987)

T-statistics with four lags for each estimation. Data cover 1967 to 2019 with annual frequency.

Models Intercept ∆at ∆νt ∆σt Q Adj-R2 RMSE F-Test P-Value DOF

(t-stat) (t-stat) (t-stat) (t-stat)

Panel A: 25 Value-Size Portfolios

I 11.8300 3.7323 0.400 2.31 17 0.000411 23

(12.5254) (5.5130)

II 4.0391 -0.0016 2.9709 0.748 1.5 36.6 1e-07 22

(2.7185) (-4.6584) (6.4066)

III 1.9768 4.8137 -0.0004 -0.0009 1.4270 0.870 1.08 41.2 2.17e-09 20

(2.3676) (8.7774) (-0.7972) (-4.3798) (2.4267)

Panel B: 160 Portfolios

I 13.1230 5.1096 0.437 2.58 124 1.12e-21 158

(31.3766) (7.7236)

II 7.5980 -0.0011 4.6631 0.637 2.07 141 1.12e-21 157

(10.0960) (-8.4937) (9.2123)

III 4.5238 4.7521 0.0015 -0.0003 5.3547 0.736 1.76 112 1.15e-44 155

(6.4193) (8.7671) (4.5397) (-2.0672) (9.4756)
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Table 6: Productivity Risks in ICAPM: 25 Equal-Weighted SIZE/BM Portfolios

Table 6 reports the results of cross-sectional regression of 25 equal-weighted SIZE/BM portfolios on a large

set of factor pricing models built on investment-based framework. I test both benchmark models and report

the progress about how does the first benchmark model develop to the second benchmark model. I also report

the adjusted R2 and Newey & West (1987) T-statistics with four lags for each estimation. The q-Factor

model and q5 model are in the control group. Data cover 1967 to 2019.

Models I II III IV V VI VII VIII IX X

Cons. 1.9768 1.0964 5.6081 2.2332 1.9434 6.6915 6.2710 6.4849 9.2458 9.0449

(t-stat) (2.3676) (1.6766) (7.3131) (1.2875) (1.9678) (6.8789) (6.9344) (6.3973) (2.9844) (2.8826)

∆at 4.8137 6.1227 5.8405 3.1563 4.9181 5.0743 5.3435 5.3482

(t-stat) (8.7774) (7.2650) (13.2872) (2.4083) (4.2483) (6.5543) (6.6214) (6.2507)

∆νt -0.0004 -0.0002 0.0003 -0.0018 0.0004 -0.0001 0.0002 0.0000

(t-stat) (-0.7972) (-0.2479) (0.8549) (-3.0791) (-0.6500) (0.0258) (0.4729) (0.0893)

∆σt -0.0009 -0.0014 -0.0011 -0.0013 -0.0009 -0.0011 -0.0011 -0.0011

(t-stat) (-4.3798) (-7.8259) (-8.6722) (-4.4787) (-2.9221) (-3.8908) (-3.6834) (-3.9434)

Q 1.4270 1.4000 0.7643 0.9872 0.5927 4.1526 4.2722

(t-stat) (2.4267) (2.0408) (1.1450) (1.3960) (0.8942) (4.8092) (5.1716)

EG 1.7011 0.0840 0.3858 -0.5369 -0.7579

(t-stat) (1.6382) (0.0585) (0.4247) (-0.4129) (-0.3106)

Mkt 2.2425 1.0130 1.3787 1.3231 -2.0446 -1.9168

(t-stat) (3.1675) (1.1312) (1.7412) (1.4239) (-0.6578) (-0.6139)

SMB 3.0899 2.5526 2.7084 3.5266 3.5020

(t-stat) (6.1162) (12.4733) (11.2249) (5.4311) (5.2817)

ROE -2.8019 -3.4290

(t-stat) (-1.3313) (-1.3836)

Ajd-R2 0.870 0.851 0.905 0.823 0.863 0.899 0.895 0.896 0.732 0.720

RMSE 1.08 1.15 0.921 1.26 1.1 0.948 0.926 0.962 1.55 1.58

F-test 41.2 35.2 58.2 29 31.4 36.8 30.3 35.6 17.4 13.3

P-value 2.17e-09 8.7e-09 9.85e-11 4.55e-08 1.5e-08 3.78e-09 2.11e-08 4.91e-09 2.71e-06 7.87e-10

DOF 20 20 20 20 19 18 17 18 20 19
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Table 7: Productivity Risks in ICAPM: 160 Equal-Weighted Portfolios

Table 7 reports the results of the second step regression of 160 equal-weighted portfolios on a large set of

factor pricing model built on investment-based framework. I test both benchmark models and report the

progress about how does the first benchmark model develop to the second benchmark model. I also report

the adjusted R2 and Newey & West (1987) T-statistics with four lags for each estimation. The q-Factor

model and q5 model are in the control group. Data cover 1967 to 2019.

Models I II III IV V VI VII VIII IX X

Cons. 4.5238 4.1643 9.4351 5.1989 4.5237 4.8469 6.2572 6.1168 3.0400 4.5312

(t-stat) (6.4193) (4.2912) (8.2375) (3.9460) (6.4111) (2.6825) (5.0597) (4.2029) (1.8166) (2.9965)

∆at 4.7521 7.3815 6.0386 -0.1311 4.7904 4.8334 3.3853 3.3369

(t-stat) (8.7671) (7.3625) (7.1554) (-0.0962) (5.6732) (6.4992) (4.3978) (4.3934)

∆νt 0.0015 0.0021 0.0021 0.0002 0.0015 0.0015 0.0016 0.0014

(t-stat) (4.5397) (3.3460) (3.3985) (0.4330) (3.8475) (3.8290) (5.0844) (3.7653)

∆σt -0.0003 -0.0011 -0.0008 -0.0013 -0.0003 -0.0003 -0.0004 -0.0003

(t-stat) (-2.0672) (-5.3135) (-4.4483) (-5.0655) (-1.9816) (-1.9388) (-2.4806) (-2.0208)

Q 5.3547 5.3442 5.2744 5.3741 5.4349 6.4056 6.2331

(t-stat) (9.4756) (8.4202) (9.3775) (9.2395) (9.4770) (11.7382) (10.4274)

EG 6.1221 1.6396 1.6344 3.9271 3.2631

(t-stat) (6.4685) (1.8513) (1.7827) (2.4317) (1.9619)

Mkt -1.4888 2.7609 0.8548 0.9469 3.8325 2.4234

(t-stat) (-1.1497) (1.2874) (0.6426) (0.6042) (2.1728) (1.6278)

SMB 3.7853 3.6051 3.3721 4.0404 4.1150

(t-stat) (8.6893) (8.5745) (9.3726) (11.2495) (12.6913)

ROE -1.2958 -0.5447

(t-stat) (-2.0976) (-0.7282)

Adj-R2 0.736 0.596 0.635 0.443 0.734 0.733 0.750 0.742 0.733 0.741

RMSE 1.76 2.18 2.07 2.56 1.77 1.74 1.72 1.74 1.77 1.75

F-test 112 59.7 70.2 32.7 89.1 73.7 69.1 77.4 110 92

P-Value 1.15e-44 1.96e-30 8.02e-34 9.58e-20 1.21e-43 1.2e-42 4.85e-44 7.91e-44 2.58e-44 1.92e-44

DOF 155 155 155 155 154 153 152 153 155 154

36



Table 8: Equal-Weighted Portfolios: Fama-French & Carhartt Factor Models

Table 8 evaluates the performances of many widely accepted asset pricing models under both the

equal-weighted 25 SIZE/BM portfolios and 160 equal-weighted portfolios, respectively. I test (i) Fama &

French (1993, 2015, 2018) three-factor, five-factor, and six-factor model; (ii) the Carhart (1997) four-factor

model in the control group. I then report the adjusted R2 and Newey & West (1987) T-statistics with four

lags for each estimation. Data are from 1967 to 2019.

Portfolios Panel A: 25 Value-Size Portfolios Panel B: 160 Portfolios

Models FF3 Carhart 4 FF5 FF6 FF3 Carhart 4 FF5 FF6

Cons. 7.8624 9.5051 9.9797 12.1135 2.2169 4.3206 2.0807 -1.3109

(t-stat) (3.3119) (3.5203) (2.5533) (2.6808) (1.1244) (1.4361) (1.4731) (-0.5971)

Mkt -0.9008 -3.3034 -2.6857 -5.1467 4.6051 2.2951 3.8817 7.3827

(t-stat) (-0.3857) (-1.1086) (-0.7596) (-1.1301) (2.2717) (0.7000) (2.8702) (3.1639)

SMB 3.7570 3.6280 3.3132 3.2060 3.8482 3.8518 4.0924 4.1463

(t-stat) (4.6000) (4.5711) (5.9314) (5.4155) (9.2210) (9.2073) (11.6695) (13.0347)

HML 5.4594 5.3651 5.4353 5.4407 7.8111 7.4906 6.8888 7.1248

(t-stat) (4.4675) (4.5524) (5.0939) (5.1039) (8.2731) (8.5094) (9.7060) (9.9364)

CMA 5.6280 5.5467 7.6361 7.8433

(t-stat) (2.9340) (2.9436) (11.7101) (11.7167)

RWM -2.4457 -2.5049 -0.4325 -0.4513

(t-stat) (-0.8232) (-0.8804) (-0.5684) (-0.6039)

MOM -7.8968 -5.3221 -5.3693 -3.0327

(t-stat) (-2.0419) (-1.2507) (-3.8358) (-2.3438)

Adj-R2 0.699 0.698 0.700 0.688 0.599 0.602 0.739 0.746

RMSE 1.64 1.63 1.64 1.67 2.18 2.17 1.75 1.73

F-test 19.6 14.9 12.2 9.82 80.1 69.1 91.1 78.7

P-Value 2.71e-06 8.61e-06 2.15e-05 7.19e-05 1.99e-31 6.33e-31 3.36e-44 3.1e-44

DOF 21 20 19 18 156 155 154 153
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Table 9: Volatility Risks in ICAPM: 25 Equal-Weighted Size/BM Portfolios

Table 9 reports the results of cross-sectional regression of 25 equal-weighted SIZE/BM portfolios on various

investment-based factor pricing models only driven by productivity uncertainty risks. I then report the

adjusted R2 and Newey & West (1987) T-statistics with four lags for each estimation. Data are from 1967

to 2019.

Models I II III IV V VI VII VIII

Cons. 4.0391 2.9532 4.9169 1.7208 4.0515 5.8418 7.2102 7.3868

(t-stat) (2.7185) (2.2676) (3.1707) (1.0244) (2.9342) (3.0103) (3.3063) (3.3652)

∆σt -0.0016 -0.0020 -0.0020 -0.0019 -0.0009 -0.0010 -0.0010 -0.0010

(t-stat) (-4.6584) (-5.9373) (-5.8259) (-3.6730) (-1.7359) (-1.8492) (-2.0156) (-2.1685)

Q 2.9709 3.8616 3.5567 3.2693 3.1622

(t-stat) (6.4066) (7.2089) (6.9498) (5.7741) (6.3721)

EG 1.6487 -1.5212 -2.1888 -0.0602

(t-stat) (3.0130) (-1.0206) (-1.7976) (-0.0330)

Mkt 2.3881 0.9816 -0.3217 -0.4368

(t-stat) (2.1457) (0.5559) (-0.1545) (-0.2063)

SMB 3.8018 4.0403 4.0630

(t-stat) (6.5240) (5.5788) (5.7588)

Adj-R2 0.748 0.689 0.711 0.656 0.774 0.769 0.765 0.775

RMSE 1.5 1.67 1.6 1.75 1.42 1.43 1.45 1.42

F-test 36.6 27.6 30.6 29 28.4 21 16.6 21.7

P-value 1e-07 1e-06 4.43e-07 3.04e-06 1.4e-07 6.22e-07 2.33e-06 4.83e-07

DOF 22 22 22 22 21 20 19 20
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Table 10: Volatility Risks in ICAPM: 160 Equal-Weighted Portfolios

Table 10 displays the results of second-pass regression of 160 equal-weighted stock portfolios on various

investment-based factor pricing models only driven by productivity uncertainty risks. I then report the

adjusted R2 and Newey & West (1987) T-statistics with four lags for each estimation. Data are from 1967

to 2019.

Models I II III IV V VI VII VIII

Cons. 7.5980 7.0225 8.6590 4.3376 6.2373 3.8498 6.1819 5.7948

(t-stat) (10.0960) (6.4212) (7.6497) (5.7419) (10.4660) (2.9410) (5.9777) (4.5136)

∆σt -0.0011 -0.0017 -0.0016 -0.0012 -0.0005 -0.0004 -0.0005 -0.0004

(t-stat) (-8.4937) (-7.1178) (-7.1002) (-4.3838) (-2.9580) (-3.0280) (-3.9975) (-2.6614)

Q 4.6631 5.5065 6.2095 5.7053 5.8744

(t-stat) (9.2123) (8.6614) (12.5847) (10.5194) (11.5018)

EG 3.0847 -1.5857 -0.3690 4.0131

(t-stat) (4.2976) (-1.9493) (-0.3378) (2.6546)

Mkt -0.0632 3.6738 0.7577 1.0468

(t-stat) (-0.0633) (2.3945) (0.6999) (0.7533)

SMB 3.3440 4.2161 4.1017

(t-stat) (8.2599) (12.8554) (11.2347)

Adj-R2 0.637 0.477 0.478 0.410 0.679 0.696 0.745 0.730

RMSE 2.07 2.48 2.48 2.64 1.95 1.89 1.74 1.78

F-test 141 59.7 73.8 56.3 113 91.9 93.7 109

P-Value 9.63e-36 3.15e-23 2.49e-23 3.61e-19 6.3e-39 7.03e-40 6.66e-45 5.98e-44

DOF 157 157 157 157 156 155 154 155
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Table 11: Productivity Risks in ICAPM: 25 Value-Weighted SIZE/BM Portfolios

Table 11 reports the results of cross-sectional regression of 25 value-weighted SIZE/BM portfolios on a large

group of factor pricing models built on investment-based framework. I test both benchmark models and the

q-Factor model and q5 model are in the control group. I also report the adjusted R2 and Newey & West

(1987) T-statistics with four lags for each estimation. Data cover 1967 to 2019.

Models I II III IV V VI VII VIII IX X

Cons. 3.8785 2.8327 6.6965 4.3462 4.5902 9.3046 8.7488 9.7843 16.2660 15.0010

(t-stat) (2.1790) (1.5743) (3.7423) (1.8049) (2.7554) (6.0120) (5.8952) (6.2127) (4.0752) (4.2470)

∆at 3.9177 4.7298 4.8214 1.9542 2.6808 3.0771 3.2828 3.4139

(t-stat) (4.7633) (3.8261) (7.2049) (1.0052) (2.0090) (2.2848) (2.2726) (2.6671)

∆νt -0.0003 -0.0007 -0.0002 -0.0020 -0.0006 -0.0008 -0.0007 -0.0008

(t-stat) (-0.4787) (-0.7120) (-0.4046) (-2.1079) (-1.1154) (-1.5523) (-1.4818) (-1.7893)

∆σt -0.0006 -0.0011 -0.0009 -0.0010 -0.0003 -0.0006 -0.0006 -0.0008

(t-stat) (-2.5636) (-5.8436) (-5.9513) (-3.3249) (-1.4304) (-1.6177) (-1.6738) (-1.8445)

Q 1.5888 2.0422 0.4558 0.5465 0.0424 2.7808 2.8758

(t-stat) (2.3156) (2.4883) (0.3388) (0.4075) (0.0328) (6.2387) (6.4372)

EG 1.4118 -1.4947 -1.2227 -1.7433 -2.1531

(t-stat) (1.4279) (-1.3376) (-1.0608) (-1.5088) (-1.2026)

Mkt 1.3449 -1.4608 -0.8566 -1.9672 -8.3039 -7.0678

(t-stat) (0.8669) (-0.9102) (-0.5545) (-1.1884) (-2.0913) (-2.0086)

SMB 1.9850 2.1028 2.1973 2.7344 2.6715

(t-stat) (2.3598) (4.7374) (4.4256) (5.8991) (6.1075)

ROE -5.9071 -6.4855

(t-stat) (-2.0750) (-2.2060)

Adj-R2 0.719 0.665 0.764 0.627 0.715 0.772 0.759 0.756 0.729 0.725

RMSE 1.31 1.15 1.2 1.5 1.31 1.18 1.21 1.22 1.28 1.29

F-test 16.4 12.9 20.4 11.1 13.1 14.5 11.8 13.4 17.1 13.7

P-value 4.28e-06 2.39e-05 7.77e-07 6.7e-05 1.34e-05 4.97e-06 1.96e-05 8.93e-06 3.03e-06 9.77e-06

DOF 20 20 20 20 19 18 17 18 20 19
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Table 12: Productivity Risks in ICAPM: 160 Value-Weighted SIZE/BM Portfolios

Table 12 displays the results of the second step regression of 160 value-weighted portfolios on a large group of

factor pricing models built on investment-based framework. I test both benchmark models and the q-Factor

model and q5 model are in the control group. I also report the adjusted R2 and Newey & West (1987)

T-statistics with four lags for each estimation. Data cover 1967 to 2019.

Models I II III IV V VI VII VIII IX X

Cons. 5.1217 4.9709 9.4809 8.1302 5.0605 9.7845 10.6920 10.7810 9.1063 9.5088

(t-stat) (8.1584) (6.3814) (14.9083) (7.3708) (8.1538) (9.3890) (9.8211) (9.7086) (6.0352) (6.2829)

∆at 3.4649 3.9569 4.4192 -0.8423 3.6980 3.7143 2.7931 2.8231

(t-stat) (6.7240) (5.5939) (7.5746) (-0.8335) (6.5263) (7.5821) (4.4406) (4.6575)

∆νt 0.0006 0.0012 0.0015 -0.0007 0.0007 0.0010 0.0009 0.0009

(t-stat) (1.6883) (2.9969) (3.8268) (-1.9271) (1.9759) (2.9849) (3.0979) (2.5048)

∆σt -0.0003 -0.0009 -0.0007 -0.0004 -0.0003 -0.0005 -0.0004 -0.0004

(t-stat) (-2.1632) (-7.3481) (-6.5704) (-2.0772) (-2.2207) (-3.7634) (-3.4172) (-3.0458)

Q 2.5862 2.5984 1.8557 1.8670 1.8182 2.2357 2.3183

(t-stat) (6.8073) (6.9767) (4.7814) (5.3888) (4.5670) (5.4612) (6.0860)

EG 3.4549 1.0807 0.8106 2.6087 2.4111

(t-stat) (5.9354) (1.7576) (1.6676) (2.9749) (2.3030)

Mkt -1.5409 -1.9016 -3.0774 -3.1199 -1.5952 -2.0490

(t-stat) (-2.3870) (-1.7797) (-2.7164) (-2.7244) (-1.0338) (-1.3217)

SMB 2.3819 2.5942 2.5126 2.7573 2.8969

(t-stat) (7.1201) (9.6532) (10.0469) (8.9888) (8.8510)

ROE 1.3587 1.5674

(t-stat) (1.6076) (2.0191)

Adj-R2 0.482 0.350 0.549 0.301 0.480 0.565 0.600 0.600 0.521 0.526

RMSE 1.72 1.92 1,60 2 1.72 1.57 1.53 1.53 1.65 1.64

F-test 38 22.4 49.4 18.1 30.4 35.4 33.5 39 44.2 36.4

P-Value 3.79e-22 1.25e-14 9.49e-27 3.33e-12 2.1e-21 1.22e-26 7.18e-28 1.59e-28 1.05e-24 1.81e-24

DOF 155 155 155 155 154 153 152 153 155 154
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Table 13: Value-Weighted Portfolios: Fama-French & Carhartt Factor Models

Table 13 evaluates the performances of many widely accepted asset pricing models under both the 25

value-weighted SIZE/BM portfolios and 160 value-weighted portfolios, respectively. I test (i) Fama & French

(1993, 2015, 2018) three-factor, five-factor, and six-factor model; (ii) the Carhart (1997) four-factor model

in the control group. I also report the adjusted R2 and Newey & West (1987) T-statistics with four lags for

each estimation. Data are from 1967 to 2019.

Portfolios Panel A: 25 Value-Size Portfolios Panel B: 160 Portfolios

Models FF3 Carhart 4 FF5 FF6 FF3 Carhart 4 FF5 FF6

Cons. 12.5133 12.3652 12.7910 17.1812 10.2846 11.9407 7.0374 8.9633

(t-stat) (4.6690) (5.2685) (2.6048) (2.9109) (7.7313) (9.3265) (4.9271) (5.4820)

Mkt -5.2035 -5.2421 -5.3605 -9.7129 -2.7481 -4.4886 0.3371 -1.6009

(t-stat) (-1.8315) (-2.0693) (-1.1368) (-1.6637) (-1.9764) (-3.3165) (0.2332) (-0.9643)

SMB 2.7571 3.0569 2.5822 2.7828 2.4606 2.5763 2.6080 2.6543

(t-stat) (4.5520) (6.9523) (3.5767) (5.5847) (7.7825) (8.3973) (8.4905) (9.2224)

HML 4.1473 3.9557 4.2183 4.1521 3.9052 3.6665 3.2273 3.2036

(t-stat) (5.8381) (6.5742) (6.0234) (7.0372) (7.3366) (7.5167) (6.5535) (6.7189)

CMA 3.4854 3.4605 2.0874 1.9810

(t-stat) (2.4115) (2.9408) (3.8656) (3.7372)

RWM -0.6106 -2.0594 1.8449 1.8185

(t-stat) (-0.2676) (-0.9037) (4.4326) (4.5229)

MOM -10.4177 -10.6653 -5.2230 -4.7712

(t-stat) (-2.6443) (-2.9923) (-3.7991) (-3.9402)

Adj-R2 0.680 0.731 0.654 0.719 0.529 0.563 0.584 0.599

RMSE 1.39 1.64 1.45 1.31 1.64 1.58 1.54 1.51

F-test 18 17.3 10.1 11.2 60.5 52.2 45.7 40.5

P-Value 5.15e-06 2.77e-06 7.86e-05 2.99e-05 5.3e-26 8.69e-28 9.54e-29 2.9e-29

DOF 21 20 19 18 156 155 154 153
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Table 14: Volatility Risks in ICAPM: 25 Value-Weighted Portfolios

Table 14 reports the results of cross-sectional regression of 25 value-weighted SIZE/BM portfolios on various

investment-based factor pricing models only driven by productivity uncertainty risks. I then report the

adjusted R2 and Newey & West (1987) T-statistics with four lags for each estimation. Data are from 1967

to 2019.

Models I II III IV V VI VII VIII

Cons. 6.5614 5.3050 8.7344 3.6796 6.5947 9.1231 10.1450 11.1560

(t-stat) (3.7850) (3.3035) (3.8317) (2.9190) (4.3242) (4.5782) (4.9048) (4.5085)

∆σt -0.0010 -0.0017 -0.0016 -0.0015 6.2146e-05 -4.1652e-05 -2.0287e-05 -0.0002

(t-stat) (-2.9993) (-6.2129) (-5.6901) (-2.8011) (0.3186) (-0.1810) (-0.0829) (-0.4936)

Q 3.0266 3.6278 3.1156 2.9844 2.8027

(t-stat) (4.5813) (5.0535) (5.1570) (4.5987) (3.8833)

EG 2.4684 -3.0640 -3.6743 -2.6023

(t-stat) (1.8729) (-3.3882) (-3.5091) (-1.7957)

Mkt -0.8767 -1.5322 -2.6216 -3.6880

(t-stat) (-0.4414) (-0.7070) (-1.1687) (-1.3827)

SMB 2.8774 2.7259 2.8704

(t-stat) (4.0246) (4.5978) (4.3258)

Adj-R2 0.619 0.465 0.551 0.365 0.697 0.696 0.684 0.676

RMSE 1.52 1.80 1.6 1.96 1.36 1.36 1.39 1.40

F-test 20.5 11.4 15.7 7.89 19.4 14.8 11.4 13.5

P-value 9.35e-06 0.000393 5.78e-05 0.00261 2.95e-06 9.12e-06 3.49e-05 1.71e-05

DOF 22 22 22 22 21 20 19 20
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Table 15: Volatility Risks in ICAPM: 160 Value-Weighted Portfolios

Table 15 displays the results of second-pass regression of 160 value-weighted stock portfolios on various

investment-based factor pricing models only driven by productivity uncertainty risks. I then report the

adjusted R2 and Newey & West (1987) T-statistics with four lags for each estimation. Data are from 1967

to 2019.

Models I II III IV V VI VII VIII

Cons. 7.8450 7.3731 10.5010 6.5361 7.5470 9.6418 11.4860 11.9920

(t-stat) (20.2988) (15.8600) (15.4465) (12.7377) (16.1213) (8.3337) (9.7013) (10.0037)

∆σt -0.0005 -0.0010 -0.0009 -0.0004 -0.0003 -0.0004 -0.0004 -0.0003

(t-stat) (-4.4814) (-6.8308) (-7.0148) (-1.9600) (-2.1428) (-2.4842) (-2.5789) (-1.6503)

Q 2.5108 2.5683 2.1652 2.0422 1.8755

(t-stat) (7.5291) (6.8853) (5.3226) (5.6501) (4.4005)

EG 2.1239 -0.3337 -0.8791 3.4461

(t-stat) (4.1847) (-0.5097) (-1.2028) (4.0702)

Mkt -2.3778 -1.6478 -4.0635 -4.4373

(t-stat) (-3.3112) (-1.3810) (-3.2675) (-3.5216)

SMB 2.4874 3.0227 2.8051

(t-stat) (7.2844) (10.3083) (9.5027)

Adj-R2 0.375 0.255 0.328 0.263 0.382 0.392 0.532 0.510

RMSE 1.89 2.06 1.96 2.05 1.88 1.85 1.63 1.67

F-test 48.8 28.2 39.9 29.3 33.8 91.9 37.2 42.4

P-Value 3.4e-17 3.36e-11 9.98e-15 1.48e-11 6.93e-17 7.99e-17 6.92e-25 5.61e-24

DOF 157 157 157 157 156 155 154 155
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